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The notion of �auto�catalytic networks has become a cornerstone in understanding the possibility of a sudden
dramatic increase of diversity in biological evolution as well as in the evolution of social and economical
systems. Here we study catalytic random networks with respect to the final outcome diversity of products. We
show that an analytical treatment of this long-standing problem is possible by mapping the problem onto a set
of nonlinear recurrence equations. The solution of these equations shows a crucial dependence of the final
number of products on the initial number of products and the density of catalytic production rules. For a fixed
density of rules we can demonstrate the existence of a phase transition from a practically unpopulated regime
to a fully populated and diverse one. The order parameter is the number of final products. We are able to fully
understand the origin of this phase transition as a crossover from one set of solutions from a quadratic equation
to the other. We observe a remarkable similarity of the solution of the system and the PVT diagrams in standard
thermodynamics.
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I. INTRODUCTION

Chemicals act on chemicals to produce new chemicals,
goods act on goods to produce new goods, and ideas act on
ideas to produce new ideas. The concept that elements of a
set act on other elements of the same set to produce new
elements which then become part of this set is ubiquitous not
only in nature but also in social systems and processes. We
might think of the development of modern chemistry, where
the invention of a new compound leads to possibilities to use
this compound �as a catalyst� to produce yet another com-
pound. The same is true for economy, where one newly in-
troduced good can be used as a tool to produce new goods
and tools. Other famous examples are recent models of evo-
lution; maybe even our whole concept of history in general
can be seen as a process of this type.

Maybe the most fascinating question associated with
these processes is under which conditions self-sustaining
systems can emerge—i.e., that the newly produced chemi-
cals, goods, or ideas find adequate other new or old chemi-
cals, goods, and ideas such that they can act on each other to
produce yet new products and so on. For any scientific ap-
proach to this subject it is clear that it is necessary to specify
rules, which product can act on another product to produce a
third one. For example there is a chemical rule that oxygen
and hydrogen will produce water but there is no rule that
gold and helium can form a compound. There is a rule that a
hammer acting on a block of iron will produce sheet metal,
but no rule that welding together two blocks of uranium 238
will lead to a big block of uranium. If one imagines that all
existing and nonexisting—but possible—products are listed
in a high-dimensional vector, then the rules how those ele-

ments can act on each other can be thought of elements in an
interaction matrix, where a zero entry means no interaction
and a nonzero element gives the interaction strength.

In history there have been plenty of instances where a
system of the above type underwent a transition from a state
with very few products to a state of vast abundance of prod-
ucts. These transitions happen over relatively short time
scales. An example from biology is the Cambrian explosion
�1�, where an unprecedented number of new taxa emerged
within very short time scales. An economical example is the
industrial revolution, where the number of industrial goods
exploded to previously unimaginable numbers, a social ex-
ample is the explosion of culture with the advent of the Re-
naissance, or a more modern example is the explosion of the
number chemical compounds in the last century.

All of these “explosive” processes share the same struc-
ture: There are possibly constructively interacting elements;
the interaction is governed by a set of rules �natural laws,
social consensus, religious restrictions� and a number of ini-
tially existing products. What does trigger the explosive
event; why is this event sometimes missing for very long
time periods? The only parameters at hand are the number of
rules, the number of initially present elements, and a possible
structure in the interaction matrix. It is likely that the cultural
explosion was driven by an increase of rules which was pos-
sible by driving back religious restrictions. The explosion of
chemical compounds was possible by discovering the rules
of modern chemistry. Let us mention here that for well-
studied systems the set of rules can in principle be known
completely. However, for large systems, it might be wise as a
first step to model them stochastically—i.e., let the interac-
tion matrix be a random matrix. In this case there will of
course be no structure in the interaction matrix, and the only
parameters will be rule density r and initial number a0 of
existing elements.*Electronic address: thurner@univie.ac.at
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Since quite some time there has been conjectured the ex-
istence of a phase transition in the above systems—e.g., in
�2�. By this we mean that in the r-a0 plane there exist well-
defined regions, which are practically unpopulated or almost
fully populated, with a sharp transition between the regimes.
This means that fixing the number of initial elements there
exists a critical density of rules, rcrit. When the system is
below rcrit the number of elements will remain relatively low
compared to the total number of possible products. Above
rcrit the system will become self-sustaining and drive towards
a heavily populated state.

Even though this setting seems to be fundamental to a
variety of disciplines and its importance has long been no-
ticed �3,4�, the progress of a systematic scientific treatment
of these problems is limited. Relevant contributions to this
field come from chemistry and biology. The adequate math-
ematical treatment of such processes is so-called catalytic
equations, which are sets of coupled, quadratic, ordinary dif-
ferential equations. Special cases of those equations are, for
example, the class of Lotka-Volterra replicators, the hyper-
cycle �5�, or more recent ideas like the Turing gas �6�. Rep-
licator dynamics, which is linear, is obtained from catalytic
dynamics by a proper scaling of time. It is needless to men-
tion that the nonlinear catalytic equations carry a tremendous
potential of complex dynamics; however, in earlier studies
some robustness in terms of fixed points seems to have been
observed. For more details see �7�.

The aim of the present work is to prove the existence and
study details of the nature of the above-mentioned phase
transition. This is possible by introducing some concepts of
set theory and—making use of the random structure of the
production rules—by mapping the size of a consecutive se-
ries of sets onto a set of update equations, which can be
solved and analyzed. The analytic formulas give insights into
what is happening at the transition. A practical aspect of this
present work is that we cover analytically the large-system
limit, which is beyond numerical reachability and has so far
not been possible to study.

The intuition for this work is based on a bit-string formu-
lation of the above problem, which is a generalization of
models recently termed random grammars �4�. In the bit-
string model there is a set of initial bit strings and a set of
strings which act on these strings by either combining strings
or substituting substrings. These latter strings can be seen as
catalysts; their existence constitutes the presence of rules of
what can be combined and/or substituted. The model which
is presented below can be shown to be one-to-one compat-
ible with the substitution and combination rules in the Kauff-
man bit-string model.

The paper is structured as follows: In Sec. II, the formal
problem is stated and necessary notation and concepts are
developed. Section III, the set of update equations is derived.
Section IV presents the solution of these equations, and in
Sec. V, the results are presented, which are further discussed
in Sec. VI.

II. NETWORK EQUATION AND SOME NOTATION

Our basic concept is to view the abundances of all pos-
sible products as entries in a d-dimensional time-dependent

vector x�t�; i.e., xi�t� is the quantity of product i present at
time t. We drop the time notation in the following. The popu-
lation dynamics of a system, where product i under the in-
fluence of product j produces product k, is given by network
equations of the type

ẋk = �
i,j

�ij
k xixj − xk�, � = �

i,j,k
�ij

k xixj . , �1�

with k�� and the component �ij
k �0. � is the domain of

nodes or—put in fancier terms—the index set of the dynamic
process. x is the state vector with dimensionality d= ���, the
number of all possible products or nodes. The state vector is
a vector of relative frequencies 0�xk�1, and �kxk=1. Each
�k encodes the structural information about which binary
combinations �i , j���2, the substrates, can interact in order
to form product k. Each entry in �k is a real number; how-
ever, for the sake of simplicity in the following we consider
only 1 for interaction or 0 for no interaction. �k can be
thought of as the set of rules of how objects interact. In the
following �k is interpreted as a random matrix in the follow-
ing way: We assume that for each product k�� there are

pairs of substrates (L�k� ,M�k�)��2 such that L�k� →
M�k�

�k�. In
words, this arrow means that k is produced by substrate L�k�
under the “influence” of substrate M�k�. Note that L�k� and
M�k� do not have to be unique; there can be more than one
pair (L�k� ,M�k�) producing a specific product k. Let us call
the number of pairs leading to product k ,NL,M�k�. We define
the production rule density as the average number of pairs
leading to one product:

r = 	NL,M�k�
k. �2�

Equations like Eq. �1� have long been known for their
rather surprising robustness in terms of fixed points where
the system converges to. This is not obvious, and one would
rather expect a situation more dominated by more compli-
cated orbits and limit cycles. For a more detailed discussion
of this type of equations see �7�. Fixed points will therefore
provide much information about the effective behavior of
such systems, the fixed-point equation being

xk
* =

1

�*�
i,j

�kxi
*xj

*. �3�

We are dealing with a nonlinear process, so that the solutions
of the network equation will in general depend strongly on
the initial conditions. Even assuming the process to be driven
towards a stable fixed point does not imply the uniqueness of
that fixed point.

Notation

We want to get some feeling as what to expect when
investigating the population dynamics of randomly sampled
fixed 0/1 networks. The dynamical properties of Eq. �1� are
linked to specific topologies. Knowing the topological fea-
tures will enable one to solve for the dynamics. Not knowing
the interaction tensor � exactly and only given its statistical
properties, following the classical concept of statistical phys-
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ics, one still can understand the expected dynamics of the
system and, in particular, its expected final outcome. We
hence study the system in a probabilistic fashion—i.e., aver-
aging over all possible topologies. The choices for �L ,M�
��k� are equally distributed, and L and M can be seen as
independent random variables.

The question we try to answer is, how many products do
we expect to end up with when starting from a given number
of randomly chosen initial substrate species? Before we pro-
ceed we need a number of definitions. We denote the number
of elements contained in some set A by writing �A� and define
the support of a process at a given time:

S�x� ª �k�xk � 0� . �4�

Suppose that the process is driven to a �stable� fixed point
such that the final support is

S*�x� ª S„lim
t→	

x�t�… . �5�

Inversely, we can ask which initial conditions end up in the
same fixed point1 and define the body of this fixed point to be
the set

B�x*� ª �x��
k

xk = 1 ∧ lim
t→	

x�t� = x*� . �6�

We further define the following operations on product sets:
the forward difference of set A,

�+A ª �k � ���L�k�,M�k�� � A� \ A , �7�

and the backward difference of A,

�−A ª �k�A�L�k�,M�k�� \ A . �8�

With these operations we can define the forward closure of
set A,

Ā+
ª � �B�A � B ∧ �+B � B� , �9�

and the backward closure of a set,

Ā−
ª � �B�A � B ∧ �−B � B� . �10�

These definitions can best be understood by viewing our dy-
namical system, Eq. �1�, as a directed graph whose nodes are
connected by arrows. A node looking at its edges can there-
fore distinguish between feather ends or arrowheads. A node
holding a feather end of an arrow is a substrate; a node
holding an arrowhead is a product with respect to this edge.
Given some set of nodes we can identify for each node k all
the nodes which will be formed due to the influence of k in
the next time step. In this sense we say the nodes look “for-
ward.” The forward difference of some set is therefore the set
of all products the nodes of the set look forward to, exclud-
ing the products that are already present as nodes of the set
we started out with. The backward difference follows the
same idea only looking at the arrows from arrowhead to-

wards the feathers. The corresponding closures are then sim-
ply obtained by adding the set differences iteratively to the
initial set; i.e., we add the difference to the initial set and
form a new difference on the first extension of the set, then
add this difference to obtain the second extension of the ini-
tial set, and so on, until the difference �forward or backward�
is empty and the iterative process comes to a halt. That this
eventually may happen can be understood by looking at
chains of arrows as an example. Take a node and add an
arrow pointing at some other randomly chosen node in the
set. In the beginning the chance to select a virginal node is
high and the chain will grow, but as the chain grows the
probability of sampling a member already in the chain in-
creases, and even though the single-sample probability may
still be small, the chance to sample into the chain eventually
is not.

For clarity let us summarize our philosophy: All objects
which can possibly act on each other are represented by the
index set � of the processing system, Eq. �1�, which contains
all the “names” of the considered and “thinkable” objects.
The index set provides the domain for all dynamical consid-
erations. Properties of the system are implemented via the
map x :�→R+, which are the relative frequencies of the in-
dexed species in the domain. We are not interested in par-
ticular weights but only in the directed network topology
coded by the matrices �k on the domain �. Not only does
this topological approach provide us with the means to talk
about randomly distributed productive substrate pairs, but
also about their density of occurrence r. Even more impor-
tant, if we are not interested in details of the dynamics, but
decide to focus only on how large the expected final set will
be �given some initial substrate set and density�, we can drop
dynamical considerations and pass to topological ones. We
are not interested in how much of each object species we will
effectively end up with, just if it got produced or not. The
subset of the domain that is effectively populated is called
the support S��. To investigate the flow of the support
under the network equation we may utilize set operations
compatible with the topological structure of directed reaction
graphs leading to the definition of the forward and the back-
ward difference and their respective closures. It is intuitively
clear that the forward closure of some set is the subset of the
domain that is flooded by the initial set during the production
process. It necessarily forms an upper limit for the size of
possible self-sustainable subsets of the domain reachable
from the initial condition. In a simplification considering an
equally distributed random interaction topology we gain a
notion of expected growth rates for the set differences based
on expected sampling rates. This leads to equations of ex-
pected growth as demonstrated next.

III. GROWTH LAWS FOR CATALYTIC SETS

We now develop a method to compute the size of the

forward closure a	= �Ā+� as a function of the production rule
density and the size of the initial set A. a	 is the final number
of products once the system has converged. The probability
of choosing some random but specific substrate pair l and m
among all possible pairs is obviously

1If there is no stable fixed point, the limits in the definition of the
final support are not converging and one has to specify convergent
subsequences reflecting the structure of the limit cycle or the cha-
otic regime.
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p =
2

d�d − 1�
. �11�

Imagine an initial random set A0 of products with a num-
ber of a0= �A0� elements. Given the dimensionality d of the
system and a production rule density r, the expected number
of produced elements in the next time step is the number of
possible pairs in A0 times the probability to find a productive
pair—i.e.,

rd
a

2
�p =

ra�a − 1�
�d − 1�

�
ra2

d
. �12�

Several of these newly created elements will already be �A0.
The probability that one of these produced elements is not
yet �A0 is 1−a0 /d, leading to the actual size of the catalytic
set at time 1, A1:

a1 = a0 + 
a0 with 
a0 =
r

d

1 −

a0

d
�a0

2, �13�

with 
a0= ��+A0� being the increment of elements. What will
happen in the next time step? We now have A1=A0��+A0.
The increment for the next time step will be made up of all
the new products which are possible �and not already in A1�
by combining two elements from �+A0 or by combining one
element from �+A0 with one from A0. The number of possible
pairs for those combinations are 
a0�
a0−1� /2�
a0

2 /2 and
a0
a0, respectively. Note that the third possibility combining
two elements from set A0 will always lead to �+A0, which is
already �A1, and no new products can emerge from this.
These possibilities multiplied by p, rd, and the probability
that the new product lies in A1 already, lead to the increment
for the second time step:


a1 =
r

d

1 −

a1

d
��
a0

2 + 2a0
a0� =
r

d

1 −

a1

d
��a1

2 − a0
2� .

�14�

Now, continue the iterative scheme At+1=At��+At. This
means that the set at time t+1 is the old set plus the products
newly generated in the time span �t , t+1�. We can finally
write down a growth equation for catalytic sets:

at+1 = at + 
at, 
at+1 =
r

d

1 −

at+1

d
��at+1

2 − at
2� , �15�

with initial conditions a0= �A0� and a−1=0. To sum up, we
have to take care of all possible new pairs by looking at all
new elements added in an iteration step and the new pairs
they can build with themselves. We also have to take into
account all the pairs they can build with elements produced
earlier. We have to exclude all the pairs that already have
been considered. This is all captured by Eq. �15�, which
should be noted to be scale invariant with respect to dimen-
sion d. To see this just scale a→a /d, and the dimension
drops out of the equation. It is therefore fully justified to
drop d from Eq. �15�, if wanted.

IV. SOLUTION OF THE UPDATE EQUATION: RESULT

The solution of the growth equations �15� with respect to
the productive pair density r and the initial set size a0 is
given in Fig. 1�a�. The immediate message is that there is a
critical density rcrit above which a continuous increase of the
initial set size a0 does not correspond to a continuous in-
crease of its forward closure size a	, but displays a phase
transition, a jump from small to very large forward closures
at some a0

crit�r�. a0
crit vanishes for r�rcrit. This demonstrates

unambiguously the existence of a phase transition in cata-
lytic random systems. As a check of consitency of the above
arguments we have also simulated Eq. �1� directly for d
=50 random networks. The corresponding results coincide
very nicely with Fig. 1�a� and can be found in �8�.

Analytical approximation of the forward-closure size

Let us define ct=
at+1 /
at. As an approximation imagine
for a moment that ct is a constant in time c. Then for the
forward closure we have

a	 = �
t

cta0 =
1

1 − c
. �16�

Let us write c, starting from right part of Eq. �15� and divid-
ing it by 
at to get

c =

at+1


at
=

r

d

1 −

at+1

d
��at+1 + at� . �17�

For the t→	 limit we naturally assume limt→	 at+1+at
=2a	, so that we get a candidate for c which produces the
right asymptotic results:

c = 2r
1 −
a	

d
�a	

d
with a	 =

a

1 − c
. �18�

We now use Eq. �18� as an Ansatz which is a polynomial of
third degree, a	

3 −a	
2 d+a	�d2 /2r�−a�d2 /2r�=0, which—

when written in terms of c—reads

c3 − 2c2 + c
1 + 2r
a

d
� + 2r

a

d

a

d
− 1� = 0. �19�

Substituting c=x+2/3 reduces to the equation x3+ px+q=0
with

p = −
1

3

1 − 6r

a

d
�, q =

2

27
+

2

3
r
a

d

3

a

d
− 1� , �20�

so that Cardano’s method can be used with x=y+z to get

y = �−
q

2
+ ��q/2�2 + �p/3�3�1/3

, z = −
p

3y
, �21�

providing us with three solutions y+z, �2y+�z, and �y+�2z
with �=exp�2�i /3�. We are only interested in the real solu-
tion y+z which yields the final result

a	 =
a

1 − c
with c = 2/3 + y + z , �22�

which is a good approximation of the true solution of the
forward equation �15� and is plotted in Fig. 1�b� in the r-a0
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plane. The comparison with Fig. 1�a� demonstrates the qual-
ity of the analytical solution.

The analytical form of the solution allows us to under-
stand the origin of the phase transition. For this reason we
observe that we can compute a	 by solving c=2r�1−a	�a	,
providing us with two solutions

a	± =
d

2

1 ±�1 − 2

c

r
� . �23�

These solutions are shown in Figs. 2�a� and 2�b�. It becomes
obvious that the phase transition actually always takes place
by the system switching from the one solution to the other at
a0

crit�r�. Below a critical value of rcrit the one solution
smoothly passes into the other. We observe a crossover of the
probable and the improbable solution. Most likely this is due
to a convexity argument, implying the monotonicity of the
size of the forward closure with respect to the size of the
initial condition. The size of the forward closure will not
shrink with increasing the initial set size and therefore has to
jump to the alternative solution at some critical line. As long
as the third-order polynomial is strictly monotonic we have a

unique real solution for the zero of the polynomial. At rcrit
the polynomial starts to have a local minimum and maximum
and we have in fact two relevant real zeros �out of three�, the
large and the small solution. rcrit is determined by the triple
zero of the polynomial. Note a famous analogy here: Just as
in Vanderwaal’s gas we can draw Maxwell lines. At the
phase transition, the small solution becomes instable and the
large solution becomes stable. Here the productive pair den-
sity r takes the role of temperature in Vanderwaal’s gas. Be-
low the critical value a system freezes into a small set of
durable species, while above the critical production law den-
sity, supercritical but yet small sets of individuals evaporate
into their forward closure.

V. DISCUSSION AND OUTLOOK

We have developed a way to map a conceptual system of
�auto�catalytic agents into a quantitative framework. With
this it is possible to show that the combination of the initial
number of products a0 and the density of mutual production
rules r is crucially influencing the growth mode of sets of
products. Our main result is that we are able to map the class

FIG. 1. Solution to the update equations �15� �a� and its analytical approximation �22� �b�. There is clearly a critical line in the r-a0 plane
where a transition from an unpopulated to an almost fully populated regime occurs. The spikes in �b� are due to numerical problems in the
plot with poles in the solution a	. �c� Projection of the exact solution to the r-a0 plane. The critical point is best seen in the “PV diagram”
as the starting point of the phase plane at pair density r=4 and a0 /d=0.65. �d� Projection of the exact solution to the r-a	 /d plane. The iso-a0

lines correspond to Maxwell lines in the classical gas analogon.
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of random catalytic networks onto a set of growth equations,
which allows us to study the expectation value of the final
number of products. The resulting equation can be solved
and shows a clear phase transition from practically unpopu-
lated zones towards almost fully populated ones, in “rule
density and initial number of products” space. The transition
is a crossover between two sets of solutions to a quadratic
equation.

We believe that this nicely resembles numerical-
experimental findings of �7�, where the authors find a de-
crease of species with an increase of pel in their Fig. 1�d�.
The fact that the transition from small to full forward-closure
sizes is gradual is either due to the limited system size �ten
species� or that the initial support was high—i.e., above
a0

crit�r�—so that no sharp increase could be found. In fact,
systems of the type of Eq. �1� are straightforwardly solvable
numerically up to system sizes of about d=100 within rea-
sonable computing time. We note that the practical value of
this present work is that it captures the large-system-size
limit, which is out of numerical reach and was not tractable
analytically before.

The present approach does not try to explain the detailed
role of autocatalytic cycles or of key-node species in the
context of understanding the beginning of an explosion of

species numbers as was very nicely done, for example, in
�9�. The periods of fast extinction reported there are not in-
corporated into our consideration yet, since we have not
taken any evolutionary hypotheses into account so far; nor
did we incorporate evolutionary concepts in the sense that
products are associated characteristics �some sort of
fitness—e.g., the weight xk� upon which they can get selected
by some method. Taking these arguments into account seems
a natural starting point for future research. We believe that it
should be possible that a combination of backward- and
forward-closure arguments can be used to estimate a critical
density of autocatalytic cycles necessary for a system to be-
come critical as studied here. We have not so far considered
negative entries in the interaction matrices, which should
also be present in natural or social systems. Finally, we men-
tion that our arguments given here should—due to the ab-
sence of a characteristic scale in the update equations—not
be limited to finite sets.
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FIG. 2. Plot of the solutions a	− �a�, a	+ �b�, and both of the above in one plot �c�. In �d� a projection onto the r-a	 plane is shown for
several a0 values. It is clear that the phase transition happens as the solutions switch from a	+ to a	−.
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